Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

from the

Fetal Diagnosis and Treatment Committee

of the

American Pediatric Surgical Association

Editor-in-Chief: Ahmed I. Marwan, MD

Special thanks to Niti Shahi, MD, Nicholas Behrendt, MD, and Jill Stein, MD $\,$

©2019, American Pediatric Surgical Association

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Twin-Twin Transfusion Syndrome

Definition

TTTS: shift of intravascular volume between twins with a shared placenta

Etiology and Background

- Mainly diagnosed in monochorionic (1 placenta), diamniotic (2 amniotic sacs) gestations who share a common placenta
- The donor and recipient twins also share multiple vascular connections/anastomoses (1)
 - Vascular anastomoses include artery-to-artery connections (AA), vein-to-vein connections (VV), and veno-arterial connections (VA)

Figure 1. Schematic of Twin-Twin Trasnfusion Syndrome.

Courtesy of the Colorado Fetal Care Center.

- Progression of disease: Unbalanced blood flow in vascular anastomoses in the shared placenta resulting in unequal volume balances between both fetuses→ hypervolemia in recipient twin and hypovolemia in donor twin→ increased mortality risk, organ failure, cardiac complications and neurodevelopmental impairment (1)
- Incidence: **10-15%** of monochorionic twins (2)
 - o If untreated, TTTS can result in 90% mortality of one or both twins (2)
- Donor versus recipient twin:

	Donor Twin	Recipient Twin
Mechanism	Volume shunted away from donor twin→ persistent hypovolemia→ oligohydramnios	Volume shunted to recipient twin→ persistent <i>hypervolemia</i> → <i>polyhydramnios</i>
US findings	Oligohydramnios, absent bladder, abnormal Doppler blood flow	Polyhydramnios, large bladder
Complications	IUGR, hydrops, death (1) Increased mortality rate in donor twin (3)	hydrops (pleural effusions, ascites, skin edema, & pericardial effusions), high output CHF, death

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Figure 2 Figure 3

Figure 4

- **Figure 2:** Transverse grayscale ultrasound image of the fetal pelvis in a donor twin shows lack of fluid within the urinary bladder.
- **Figure 3:** Transverse color Doppler ultrasound image of the the fetal pelvis in the same donor twin shows lack of fluid within the urinary bladder with expected location between the umbilical arteries.
- **Figure 4:** Longitudinal ultrasound of a donor twin demonstrates lack of fluid within the urinary bladder.

Courtesy of Jill Stein, MD - Colorado Fetal Care Center

- Associated anomalies:
 - o IUGR in 20% of cases (2)
 - o Chromosomal abnormalities (4)
 - o Congenital cardiac defects (5-10)
 - o Cerebral lesions (5-10)
- Worse prognosis with the following:
 - o More severe presentation when it manifests <20 weeks (1, 11)
 - o Higher Quintero stage
 - o Fetal growth **discordance >30%** (3, 10), IUGR in one or both fetuses

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Figure 5. 3-Dimensional Anatomical model of Twin-twin Transfusion Syndrome.

Courtesy of Christine Castillo, Nicholas Behrendt, MD and Rony Marwan, MD, Colorado Fetal Care Center

Differential Diagnosis (2)

- 1) IUGR (selective intrauterine growth restriction)
- 2) TAPS (twin anemia polycythemia sequence)
- 3) Discordant twins secondary to anomaly
- 4) Subjective fluid discordance
- 5) Dichorionic twin gestation with fluid discordance
- 6) Discordant twins secondary to infection

Prenatal Consideration

- Monoamniotic Dichorionic twin monitoring: (2)
 - o 1st trimester ultrasound assessment: chorionicity, nuchal translucency
 - Starting at 16 weeks, q2 week surveillance with ultrasound: amniotic fluid evaluation, middle cerebral artery (MCA) peak systolic velocity (increased frequency if abnormal)
 - o If patient is diagnosed with TTTS, recommend **echocardiogram**
 - o Monthly fetal growth evaluations

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Diagnosis

- Based on current ultrasound surveillance and echocardiography
- Current staging systems: (12)
 - o Quintero staging for TTTS: (2, 4, 11)
 - Cincinnati modification of the Quintero staging: incorporates echo findings of AV valve function, ventricular hypertrophy and ventricular function (13)
 - o CHOP cardiovascular score in TTTS (14-17)
 - o Cardiovascular Profile Score (CVPS) for fetal hydrops (18)

Quintero Staging for TTTS		
Stage 1	Polyhydramnios, oligohydramnios, bladder of donor visible	
Stage 2	Dopplers are not critically abnormal, bladder is not visualized in donor twin	
Stage 3	Abnormal Doppler studies in donor or recipient twin (i.e. absent or reversal umbilical artery end diastolic flow, reversal of ductus venosus a-wave, and/or pulsatile umbilical vein flow)	
Stage 4	Hydrops of one or both twins	
Stage 5	Death of one or both twins	

Figure 6. Normal umbilical arterial spectral Doppler waveform pattern in a donor twin with brisk systolic upstroke and positive diastolic flow.

Courtesy of Jill Stein, MD - Colorado Fetal Care Center

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Figure 7. Abnormal umbilical arterial spectral Doppler waveform pattern in a recipient twin with absent diastolic flow.

Courtesy of Jill Stein, MD - Colorado Fetal Care Center

Figure 8. Demonstration of polyhydramnios in Recipient twin on Ultrasound.

Courtesy of Nicholas Behrendt, MD –
Colorado Fetal Care Center

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Cardiomyopathy			
Variable	Mild (Stage 3a)	Moderate (Stage 3b)	Severe (Stage 3c)
AV regurgitation	Mild	Moderate	Severe
RV/LV thickness	Mild	Moderate	Severe
MPI (myocardial performance index)	>2+ Z-score	≥ +3 Z-score	≥ +4 Z-score
LV-MPI	> 0.43 to 0.48	≥ +4 Z-score	≥ 0.53
RV-MPI	> 0.48 to 0.56	> 0.56 to 0.64	≥ 0.64

CHOP Cardiovascular Score- Recipient Twin					
	Score	0	1	2	3
Ventricular characteristics	Cardiac enlargement	None	Mild	Moderate- Severe	
	Ventricular hypertrophy	None	Mild	Moderate- Severe	
	Systolic dysfunction	None	Mild	Moderate- Severe	
Valve function	Tricuspid regurgitation	None	Mild	Moderate- Severe	
	Mitral regurgitation	None	Mild	Moderate- Severe	
Venous Doppler Characteristics	Tricuspid valve inflow	2 peaks	1 peak		
	Mitral valve inflow	2 peaks	1 peak		
	Ductus venosus	Forward	Decreased atrial contraction	Reversal of flow	
	Umbilical vein pulsation	None	+		
Great Vessel Analysis	Outflow tracts	PA>Aorta	PA= aorta	PA <aorta< th=""><th>RV outflow obstruction</th></aorta<>	RV outflow obstruction
	Pulmonary insufficiency	None	+		
Arterial Doppler Characteristics		Normal	Decreased diastolic flow	No flow or reversal of diastolic flow	

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Fetal Cardiovascular Profile Score			
	2	1	0
Hydrops	None	Ascites, pleural effusion or pericardial effusion	Skin edema
Cardiomegaly (cardiac area/thoracic area)	>0.2 to 0.35	0.35 to 0.50	<0.2 OR >0.5
Cardiac function	Normal, diastolic filling	Holosystolic TR	Holosystolic MR, monophasic diastolic filling
Arterial umbilical Doppler	2.2	AA	
Venous Doppler (umbilical vein and ductus venosus)		Wiki	A440 10 15

Treatment

1) Amnioreduction

- a. Definition: removal of excess amniotic fluid from **recipient** twin, can be done serially
- b. Usually not a curative procedure, potential for persistence/recurrence (19-21)
- c. Frequently used if twins >26 weeks gestation (1)
- d. Indication: often for non-complicated TTTS, potentially reverses TTTS in early Quintero stages
- e. Advantages: decreases the side effects of polyhydramnios in recipient twin, may be therapeutic
- f. Risks: worsening of TTTS, risk of bleeding, chorioamniotic membrane separation, premature rupture of membranes (PROM)→ prematurity, fetal loss, neurologic impairment, septostomy (rupture of amniotic membrane increased need for additional procedures), uterine bleeding, chorioamnionitis, etc. (1, 2)

2) Septostomy

- a. Definition: deliberate puncture into the intertwin membrane to allow for equilibration of amniotic fluid volumes (21, 22)
- b. Risks: cord entanglement, fetal loss

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

3) Ultrasound or fetoscopic-guided radio frequency ablation (selective fetal reductions)

- Definition: selective radiofrequency ablation of the cord of the diseased co-twin or co-twin with significant anomaly in effort to improve the survival of the other twin
- b. Risks: neurologic injury of surviving twin, PPROM (21)

4) Fetoscopic coagulation of vascular anastomoses (laser ablation)

- a. Considered standard of care (3), improved survival over amnioreduction
- b. Indication: Advanced Quintero stages, frequently during **16-26 weeks** of gestation
- c. Methods: (24-27)
 - i. **Non-selective:** Coagulation of all placental vessels that cross the intertwin membrane/membranous equator, decreased donor survival
 - ii. **Selective:** Coagulation of selective connections
 - iii. **Sequential:** The order of ablation is as follows: donor artery-recipient vein anastomosis, recipient artery-donor vein anastomosis, V-A, and lastly A-A.
 - iv. Solomon method: Planned laser ablation between vascular connections along the vascular equator; decreased recurrence of TTTS and TAPS (24)
- d. Amnioreduction frequently performed at the end of the procedure
- e. Advantages: increased survival of both twins, decreased neurologic morbidities (2)
- f. Risks: PROM, premature delivery, chorionic membrane septation, treatment failure (may miss vascular anastomoses), and fetal demise (2, 3)
- g. Contraindication: PPROM (1)

Figure 9. Before and after Fetoscopic Coagulation of Vascular anastomose.

Courtesy of Nicholas Behrendt, MD - Colorado Fetal Care Center

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

Postnatal Considerations

- Average gestational age at delivery **31-32 weeks** (28)
- After fetoscopic photo coagulation, recommend weekly ultrasound surveillance and Doppler studies, particularly for recurrent TTTS and TAPS (1)
- Complications: (2)
 - o Twin anemia polycythemia sequence (TAPS)
 - o Selective fetal intrauterine growth restriction (**sIUGR**)
 - Recurrent TTTS
 - o Fetal demise
 - Rate of co-twin demise 12-25% (14)
 - Higher risk of death in donor twin
 - o Neurologic injuries and/or **neurodevelopment impairment** including cerebral palsy, quadriplegia/diplegia/hemiplegia, developmental delay, blindness and hearing impairment (5)
 - Higher risk of neurodevelopment impairment with advanced gestational age at time of laser therapy, high Quintero stage, low gestational age at birth and low birth weight (limitation: only teen mother population) in both donor and recipient twins (no difference between donor and recipients) (28)
 - Prematurity and associated complications
 - o **Cardiac complications** from volume overload such as ventricular hypertrophy, ventricular dysfunction, valvular defects and heart failure (6, 17, 29, 30)
 - Respiratory complications
 - o Renal failure

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

References

- 1. Mutatore CS, Feltis B. **Twin-to-Twin Transfusion Syndrome** In: NaT (Not a Surgical Textbook). © 2019 American Pediatric Surgical Association and Unbound Medicine, Inc; 2018.
- 2. Marwan R, Feltis B, Zaretsky M. MultipleGestation, Twin-TwinTransfusionSyndrome (TTTS) and Twin Reversed Arterial Perfusion (TRAP)Sequence. In: NaT (Not a Textbook). American Pediatric Surgical Association and Unbound Medicine, Inc.
- 3. Hoffman M, Habli M, Donepudi R, Boring N, Johnson A, Moise KJ, et al. Perinatal Outcomes of Single Fetal Survivor after Fetal Intervention for Complicated Monochorionic Twins. Prenat Diagn. 2018.
- 4. Townsend R, Khalil A. Ultrasound screening for complications in twin pregnancy. Seminars in Fetal and Neonatal Medicine; Elsevier; 2018.
- 5. Sommer J, Nuyt A, Audibert F, Dorval V, Wavrant S, Altit G, et al. Outcomes of extremely premature infants with twin-twin transfusion syndrome treated by laser therapy. Journal of Perinatology. 2018;38(11):1548.
- 6. Van Mieghem T, Lewi L, Gucciardo L, Dekoninck P, Van Schoubroeck D, Devlieger R, et al. The Fetal Heart in Twin-to-Twin Transfusion Syndrome. Int J Pediatr. 2010;2010:10.1155/2010/379792. Epub 2010 Aug 8.
- 7. Pruetz JD, Sklansky M, Detterich J, Korst LM, Llanes A, Chmait RH. Twin-twin transfusion syndrome treated with laser surgery: postnatal prevalence of congenital heart disease in surviving recipients and donors. Prenat Diagn. 2011;31(10):973-7.
- 8. Wee LY, Fisk NM. The twin-twin transfusion syndrome. Semin Neonatol. 2002 Jun;7(3):187-202.
- 9. Quarello E, Molho M, Ville Y. Incidence, mechanisms, and patterns of fetal cerebral lesions in twin-to-twin transfusion syndrome. The Journal of Maternal-Fetal & Neonatal Medicine. 2007;20(8):589-97.
- 10. Snowise S, Moise KJ, Johnson A, Bebbington MW, Papanna R. Donor Death After Selective Fetoscopic Laser Surgery for Twin-Twin Transfusion Syndrome. Obstetrics & Gynecology. 2015;126(1):74-80.
- 11. Quintero RA, Morales WJ, Allen MH, Bornick PW, Johnson PK, Kruger M. Staging of twintwin transfusion syndrome. Journal of Perinatology. 1999;19(8):550.
- 12. Villa C, Habli M, VotavaĐSmith J, Cnota J, Lim F, Divanovic A, et al. Assessment of fetal cardiomyopathy in early-stage twin-twin transfusion syndrome: comparison between commonly reported cardiovascular assessment scores. Ultrasound in Obstetrics & Gynecology. 2014;43(6):646-51.
- 13. Harkness UF, Crombleholme TM. Twin-twin transfusion syndrome: where do we go from here? Seminars in perinatology; Elsevier; 2005.
- 14. Stirnemann J, Nasr B, Proulx F, Essaoui M, Ville Y. Evaluation of the CHOP cardiovascular score as a prognostic predictor of outcome in twin-twin transfusion syndrome after laser coagulation of placental vessels in a prospective cohort. Ultrasound in Obstetrics & Gynecology. 2010;36(1):52-7.
- 15. Rychik J, Tian Z, Bebbington M, Xu F, McCann M, Mann S, et al. The twin-twin transfusion syndrome: spectrum of cardiovascular abnormality and development of a cardiovascular score to assess severity of disease. Obstet Gynecol. 2007;197(4):392. e1,392. e8.

Prenatal Counseling SeriesTwin-Twin Transfusion Syndrome

- 16. Michelfelder E, Gottliebson W, Border W, Kinsel M, Polzin W, Livingston J, et al. Early manifestations and spectrum of recipient twin cardiomyopathy in twin-twin transfusion syndrome: relation to Quintero stage. Ultrasound in Obstetrics and Gynecology: The Official Journal of the International Society of Ultrasound in Obstetrics and Gynecology. 2007;30(7):965-71.
- 17. Habli M, Michelfelder E, Cnota J, Wall D, Polzin W, Lewis D, et al. Prevalence and progression of recipient Dtwin cardiomyopathy in early Dstage twin-twin transfusion syndrome. Ultrasound in obstetrics & gynecology. 2012;39(1):63-8.
- 18. Hofstaetter C, Hofstaetter C, Hansmann M, Eik-Nes SH, Huhta JC, Luther SL. A cardiovascular profile score in the surveillance of fetal hydrops. The Journal of Maternal-Fetal & Neonatal Medicine. 2006;19(7):407-13.
- 19. Senat M, Deprest J, Boulvain M, Paupe A, Winer N, Ville Y. Endoscopic laser surgery versus serial amnioreduction for severe twin-to-twin transfusion syndrome. N Engl J Med. 2004;351(2):136-44.
- 20. Mari G, Detti L, Oz U, Abuhamad AZ. Long-term outcome in twin-twin transfusion syndrome treated with serial aggressive amnioreduction. Obstet Gynecol. 2000;183(1):211-7.
- 21. Roberts D, Neilson JP, Kilby MD, Gates S. Interventions for the treatment of twinĐtwin transfusion syndrome. Cochrane Database of Systematic Reviews. 2014(1).
- 22. Moise Jr KJ, Dorman K, Lamvu G, Saade GR, Fisk NM, Dickinson JE, et al. A randomized trial of amnioreduction versus septostomy in the treatment of twin-twin transfusion syndrome. Obstet Gynecol. 2005;193(3):701-7.
- 23. Roman A, Papanna R, Johnson A, Hassan S, Moldenhauer J, Molina S, et al. Selective reduction in complicated monochorionic pregnancies: radiofrequency ablation vs. bipolar cord coagulation. Ultrasound in Obstetrics & Gynecology. 2010;36(1):37-41.
- 24. Ruano R, Rodo C, Peiro J, Shamshirsaz A, Haeri S, Nomura M, et al. Fetoscopic laser ablation of placental anastomoses in twin-twin transfusion syndrome using 'Solomon technique'. Ultrasound in Obstetrics & Gynecology. 2013;42(4):434-9.
- 25. Baschat AA, Barber J, Pedersen N, Turan OM, Harman CR. Outcome after fetoscopic selective laser ablation of placental anastomoses vs equatorial laser dichorionization for the treatment of twin-to-twin transfusion syndrome. Obstet Gynecol. 2013;209(3):234. e1,234. e8.
- 26. De Lia J, Kuhlmann R, Lopez K. Treating previable twin-twin transfusion syndrome with fetoscopic laser surgery: outcomes following the learning curve. J Perinat Med. 1999;27(1):61-7.
- 27. Chalouhi G, Essaoui M, Stirnemann J, Quibel T, Deloison B, Salomon L, et al. Laser therapy for twinĐtoĐtwin transfusion syndrome (TTTS). Prenat Diagn. 2011;31(7):637-46.
- 28. Lopriore E, Nagel HT, Vandenbussche FP, Walther FJ. Long-term neurodevelopmental outcome in twin-to-twin transfusion syndrome. Obstet Gynecol. 2003;189(5):1314-9.
- 29. Delabaere A, Leduc F, Reboul Q, Fuchs F, Wavrant S, Dubé J, et al. Factors associated to early intrauterine fetal demise after laser for TTTS by pre-operative fetal heart and Doppler ultrasound. Prenat Diagn. 2018.
- 30. Fisk N, Duncombe G, Sullivan M. The basic and clinical science of twin-twin transfusion syndrome. Placenta. 2009;30(5):379-90.